不定积分公式表

Math
Article Directory

info

去年刚学不定积分的时候敲的表,之前懒得搬,最近上概率论需要用到感觉还是有必要再把这篇旧文给搬上来的 QwQ

k,μ,a(a>0,a1)k, \mu, a(a>0, a\not ={1}) 是常数.

  1. k dx=kx+C\int k \ \mathrm{d}x=kx+C
  2. 1xdx=lnx+C\int\dfrac{1}{x}\mathrm{d}x=\ln{|x|}+C
  3. xμ dx=xμ+1μ+1+C\int x^{\mu}\ \mathrm{d}x=\dfrac{x^{\mu+1}}{\mu+1}+C, 特例 1x2dx=1x+C,1xdx=2x+C\int\dfrac{1}{x^2}\mathrm{d}x=-\dfrac{1}{x}+C, \int\dfrac{1}{\sqrt{x}}\mathrm{d}x=2\sqrt{x}+C
  4. ax dx=axlna+C\int a^x\ \mathrm{d}x=\dfrac{a^x}{\ln{a}}+C, 特例 ex dx=ex+C\int e^x\ \mathrm{d}x=e^x+C
  5. cosx dx=sinx+C\int\cos{x} \ \mathrm{d}x=\sin{x}+C
  6. sinx dx=cosx+C\int\sin{x} \ \mathrm{d}x=-\cos{x}+C
  7. 1cos2xdx=sec2x dx=tanx+C\int\dfrac{1}{\cos^2{x}}\mathrm{d}x=\int\sec^2{x}\ \mathrm{d}x=\tan{x}+C
  8. 1sin2xdx=csc2x dx=cotx+C\int\dfrac{1}{\sin^2{x}}\mathrm{d}x=\int\csc^2{x}\ \mathrm{d}x=-\cot{x}+C
  9. 1a2+x2dx=1aarctanxa+C\int\dfrac{1}{a^2+x^2}\mathrm{d}x=\dfrac{1}{a}\arctan{\dfrac{x}{a}}+C, 特例 11+x2dx=arctanx+C\int\dfrac{1}{1+x^2}\mathrm{d}x=\arctan{x}+C
  10. 1a2x2dx=12alna+xax+C\int\dfrac{1}{a^2-x^2}\mathrm{d}x=\dfrac{1}{2a}\ln{\left|\dfrac{a+x}{a-x}\right|}+C, 特例 11x2dx=arth x+C\int\dfrac{1}{1-x^2}\mathrm{d}x=\mathrm{arth}\ x+C
  11. 1a2x2dx=arcsinxa+C\int\dfrac{1}{\sqrt{a^2-x^2}}\mathrm{d}x=\arcsin{\dfrac{x}{a}}+C, 特例 11x2dx=arcsinx+C\int\dfrac{1}{\sqrt{1-x^2}}\mathrm{d}x=\arcsin{x}+C
  12. 1x2±a2dx=lnx+x2±a2+C\int\dfrac{1}{\sqrt{x^2\pm a^2}}\mathrm{d}x=\ln{\left|x+\sqrt{x^2\pm a^2}\right|+C}, 特例 1x2+1dx=arsh x+C\int\dfrac{1}{\sqrt{x^2+1}}\mathrm{d}x=\mathrm{arsh}\ x+C
  13. chx dx=shx+C\int\ch{x}\ \mathrm{d}x=\sh{x}+C
  14. shx dx=chx+C\int\sh{x}\ \mathrm{d}x=\ch{x}+C
  15. secx dx=lnsecx+tanx+C\int\sec{x}\ \mathrm{d}x=\ln{\left|\sec{x}+\tan{x}\right|}+C
  16. cscx dx=lncscxcotx+C\int\csc{x}\ \mathrm{d}x=\ln{\left|\csc{x}-\cot{x}\right|}+C

其中,

shx(sinhx)=exex2\sh{x}(\sinh{x})=\dfrac{e^x-e^{-x}}{2} 为双曲正弦函数

chx(coshx)=ex+ex2\ch{x}(\cosh{x})=\dfrac{e^x+e^{-x}}{2} 为双曲余弦函数

thx(tanhx)=shxchx=exexex+ex\th{x}(\tanh{x})=\dfrac{\sh{x}}{\ch{x}}=\dfrac{e^x-e^{-x}}{e^x+e^{-x}} 为双曲正切函数

Author: f1a3h

Permalink: https://blog.rbkou.me/Math/infinite-integral-formula-table/

文章默认使用 CC BY-NC-SA 4.0 协议进行许可,使用时请注意遵守协议。

Comments